skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Poliakov, N. and"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Selective Catalytic Reduction (SCR) operation depends strongly on both heat and ammonia availability (stored or incoming). These requirements make high efficiency SCR challenging in lower temperature cycles where SCR is relatively cold, and Diesel Exhaust Fluid (DEF) injection is largely absent due to deposit risks. Examples include low temperature cycles such as low-idling, stop-and-go or low-load cycles such as city driving or local delivery cycles. An Electrically Heated Mixer/ EHM™ is utilized to address these challenges in a single component. EHM simultaneously provides heat for rapid SCR heat-up during the cold phase or in other low-temperature operations, steady or transient. Second, its heating mechanism makes deposit risks nearly non-existent. Third, EHM enables DEF injection at 130 °C, markedly enhancing the low temperature SCR impact. It is shown that these capabilities collectively make EHM a promising pathway for meeting ultra-stringent NOx targets including California 2027 (0.02 gr/hp.hr). Via rapidly heating the SCR catalyst during cold-start, EHM enables substantially lowering the cold-phase NOx. For instance, it is shown this lowers the cold FTP and cold WHTC NOx emission by 2 – 2.5 fold and in Low-Load Cycle by 22-fold. EHM also allows DEF injection in low exhaust temperatures such as in 70 - 80 °C, for instance for rapidly filling the SCR catalyst with ammonia, if needed. Unlike adding other exhaust flow heating devices where an additional component is ultimately integrated in the aftertreatment architecture, EHM is a mixer, already present in emission control systems. These flexibilities, along with its lower cost and ease in fitting, make EHM an enabling pathway for Diesel emission control systems meeting very low NOx regulations. 
    more » « less
  2. Selective Catalytic Reduction (SCR) operation depends strongly on both heat and ammonia availability (stored or incoming). These requirements make high efficiency SCR challenging in lower temperature cycles where SCR is relatively cold, and Diesel Exhaust Fluid (DEF) injection is largely absent due to deposit risks. Examples include low temperature cycles such as low-idling, stop-and-go or low-load cycles such as city driving or local delivery cycles. An Electrically Heated Mixer/ EHM™ is utilized to address these challenges in a single component. EHM simultaneously provides heat for rapid SCR heat-up during the cold phase or in other low-temperature operations, steady or transient. Second, its heating mechanism makes deposit risks nearly non-existent. Third, EHM enables DEF injection at 130 °C, markedly enhancing the low temperature SCR impact. It is shown that these capabilities collectively make EHM a promising pathway for meeting ultra-stringent NOx targets including California 2027 (0.02 gr/hp.hr). Via rapidly heating the SCR catalyst during cold-start, EHM enables substantially lowering the cold-phase NOx. For instance, it is shown this lowers the cold FTP and cold WHTC NOx emission by 2 – 2.5 fold and in Low-Load Cycle by 22-fold. EHM also allows DEF injection in low exhaust temperatures such as in 70 - 80 °C, for instance for rapidly filling the SCR catalyst with ammonia, if needed. Unlike adding other exhaust flow heating devices where an additional component is ultimately integrated in the aftertreatment architecture, EHM is a mixer, already present in emission control systems. These flexibilities, along with its lower cost and ease in fitting, make EHM an enabling pathway for Diesel emission control systems meeting very low NOx regulations. 
    more » « less